आलेखन में ज्यामिति कला का उपयोग क्यों करते हैं? - aalekhan mein jyaamiti kala ka upayog kyon karate hain?

Homeआलेखन कला (चित्रकला) व रंगआलेखन कला के प्रकार । Types of Design Drawing in Hindi

आलेखन में ज्यामिति कला का उपयोग क्यों करते हैं? - aalekhan mein jyaamiti kala ka upayog kyon karate hain?

चित्रकला की दृष्टि से आलेखन चार प्रकार के होते हैं जो निम्न हैं -

1. प्राकृतिक आलेखन

2. ज्यामितीय आलेखन

3. आलंकारिक आलेखन

4. सूक्ष्म आलेखन

1. प्राकृतिक आलेखन -:

फूलों, पत्तियों और कलियों या अन्य प्राकृतिक वस्तुओं के संयोजन से बने हुए आलेखन को प्राकृतिक आलेखन कहते हैं। ये ऐसे आलेखन होते हैं जिनमे प्राकृतिक वस्तुओं के वास्तविक रूप में किसी भी प्रकार का कोई भी संशोधन या परिवर्तन नहीं किया जाता है। इसमें ऐसा कुछ अपनी पास से नहीं डाला जाता है जो काल्पनिक हो जैसे माना अगर कमल का फूल है और उसके पत्ते पानी पर हैं तो आप कमल के पत्ते को फूल के ऊपर ले जाकर नहीं बना सकते हैं क्योंकि कमल का पत्ता सदैव पानी पर तैरता रहता है अगर कमल के पत्ते को फुल के ऊपर ले जाकर आपबनाएंगे तो प्राकृतिक आलेखन के अंतर्गत नहीं आएगा।

2. आलंकारिक आलेखन -:

ऐसे आलेखन जो, वास्तविकता को ध्यान में न रखते हुए , वस्तु को अधिक से अधिक सुन्दर बनाने के लिए बनाये जाते हैं, इस प्रकार के आलेखन को आलंकारिक आलेखन कहते हैं। जब इस प्रकार के आलेखन की रचना की जाती है तो प्राकृतिक वस्तुओं के आकार रंग इत्यादि पर ध्यान नहीं दिया जाता है इसमें केवल सुंदरता बढ़ाने के लिए नए नए कदम उठाने का कार्य किया जाता है। जब इस प्रकार की कला निर्मित की जाती है तो उसको सुंदर दिखाई देने के लिए किसी भी तरह का प्रयोग किया जा सकता है चाहे वह भी पूरी तरह विपरीत रंग ही क्यों न भरा जाए।

3. ज्यामितीय आलेखन -:

ऐसा आलेखन जो ज्यामितीय आकृतियों के संयोजन से बनते है उसे ज्यामितीय आलेखन कहते हैं। इस प्रकार के आलेखन को ज्यामितीय आकृतियों का प्रयोग करके बनाया जाता है। जब इस आलेखन कला को बनाया जाता है तो ज्यामितीय यंत्रों का सहारा लिया जाता है। ज्यामितीय यंत्रों का सहारा लेकर ज्यामितीय आलेखन का निर्माण किया जाता है।

4. सूक्ष्म आलेखन -:

प्राकृतिक आलेखन, ज्यामितीय आलेखन और आलंकारिक आलेखन के सम्मिश्रण से बने हुए आलेखन को सूक्ष्म आलेखन कहते हैं। सूक्ष्म आलेखन बनाने के लिए ऊपर दिए गए तीनों आलेखन का सहारा लिया जाता है और जब जिस भी आलेखन की आवश्यकता, चित्रकला में पड़ती है, उसका प्रयोग करके सूक्ष्म आलेखन का निर्माण किया जाता है। सूक्ष्म आलेखन वही है जिसमें प्राकृतिक आलेखन, ज्यामितीय आलेखन और अलंकारिक आलेखन के मिश्रण हों।

ज्यामिति
आलेखन में ज्यामिति कला का उपयोग क्यों करते हैं? - aalekhan mein jyaamiti kala ka upayog kyon karate hain?

ओक्सीरिंकस पेपिरस(P.Oxy. I 29) जो यूक्लिड का एलीमेंट्स का एक टुकड़ा दिखा रहा है

ज्यामिति का इतिहास

उपखंड

उपखंड · अयूक्लिडीय ज्यामिति  · वैश्‍लेषिक ज्यामिति  · रीमानी ज्यामिति  · अवकल ज्यामिति  · प्रक्षेपीय ज्यामिति  · बीजीय ज्यामिति  · प्रतिलोमीय ज्यामिति

अनुसंधान के क्षेत्रों

बीजीय ज्यामिति

महत्वपूर्ण अवधारणा

बिंदु  · सरल रेखा  · Perpendicular  · Parallel  · Line segment  · Ray  · समतल  · लम्बाई  · क्षेत्रफल  · आयतन  · Vertex  · कोण  · सर्वांगसमता  · समरूपता  · बहुभुज  · त्रिभुज  · Altitude  · Hypotenuse · पायथोगोरस प्रमेय · चतुर्भुज  · Trapezoid · Kite  · Parallelogram (Rhomboid, आयत, Rhombus, वर्ग)  · Diagonal  · सममिति  · वक्र · वृत्त  · Area of a disk  · Circumference  · Diameter  · Cylinder  · Sphere  · पिरामिड आकार  · आयाम (एक, दो, तीन, चार)

रेखागणितज्ञ

आर्यभट  · Ahmes  · एपोलोनियस  · आर्किमिडिज़  · बौधायन  · ब्रह्मगुप्त  · यूक्लिड  · पाइथागोरस  · खय्याम  · देकार्त · पास्कल  · ओइलर  · Gauss  · Ibn al-Yasamin  · Jyeṣṭhadeva  · कात्यायन  · Lobachevsky  · Manava  · Minggatu  · Riemann  · Klein  · Parameshvara  · पांकरे  · Sijzi  · हिल्बर्ट  · Minkowski  · Cartan  · Veblen  · Sakabe Kōhan  · Gromov  · Atiyah  · Virasena  · Yang Hui  · Yasuaki Aida  · Zhang Heng

  • दे
  • वा
  • सं

आलेखन में ज्यामिति कला का उपयोग क्यों करते हैं? - aalekhan mein jyaamiti kala ka upayog kyon karate hain?

ज्यामिति या रेखागणित (en:Geometry) गणित की तीन विशाल शाखाओं में से एक है। इसमें बिन्दुओं, रेखाओं, तलों और ठोस चीज़ों के गुणस्वभाव, मापन और उनके अन्तरिक्ष में सापेक्षिक स्थिति का अध्ययन किया जाता है। ज्यामिति, ज्ञान की सबसे प्राचीन शाखाओं में से एक है।

ज्यामिति गणित की वह शाखा है जिसमें बिंदुओं, रेखाओं, वक्रों, समतलों इत्यादि का अध्ययन होता है। भूमि के नाप सम्बन्धी कार्यों से इस विज्ञान की उत्पत्ति हुई, इसलिये इस गणित को भूमिति भी कहते हैं। आरम्भ में यह अध्ययन रेखाओं तथा रेखाओं से घिरे क्षेत्रों के गुणों तक ही सीमित रहा, जिसके कारण ज्यामिति का नाम रेखागणित भी है

इतिहास[संपादित करें]

भारत में यज्ञवेदियों के निर्माण कार्य में गणितज्ञों का ध्यान ज्यामिति के अध्ययन की और आकृष्ट किया, उनके अध्ययन में क्षेत्रसमिति का पुट अधिक था। इतिहासयज्ञों का मत है कि भारतवासी ईसा से 1,000 वर्ष पूर्व ऐसे संबंध जैसे 3² + 4² = 5² जानते थे, परंतु ऐसे ही कतिपय छुटपुट समीकरणों के अतिरिक्त उन्होंने ऐसे संबंधों का किसी व्यापक रूप से अध्ययन नहीं किया। ईसा से लगभग 600 वर्ष पूर्व रोम के गणितज्ञ पिथागोरैस ने इस संबंध का बड़े तर्कपूर्ण ढंग से अध्ययन किया और यह बताया कि एक समकोण त्रिभुज में कर्ण पर का वर्ग अन्य भुजाओं के ऊपर वर्गों के योगफल के बराबर होता है।

वैसे तो ज्यामिति का अध्ययन सभी पुराने सभ्य देशों, जैसे मिस्र, बैबिलोनिया, चीन, भारत तथा यूनान, में लगभग साथ ही साथ आरंभ हुआ, परंतु जितनी उन्नति इस विज्ञान में यूनान ने की उतनी किसी और देश ने नहीं की। ईसा से लगभग 300 वर्ष पूर्व यूनान के एक गणितज यूक्लिड ने उस समय तक जितने तथ्य ज्ञात थे उन सबको बड़े तर्कपूर्ण ढंग से क्रमबद्ध किया। ज्ञात तथ्यों के आधार पर उसने अन्य तथ्य सिद्ध करने का प्रयत्न किया। इस प्रकार तथ्यों को क्रमबद्ध करने पर वह कुछ ऐसे प्रारंभिक तथ्यों पर पहुँचा जिनको सिद्ध करना कठिन है। वैसे वे बिलकुल स्पष्ट प्रतीत होते हैं। ये तथ्य इतने सरल हैं कि यूक्लिड ने इन्हें स्वयंसिद्ध मान लिया और इन्हें स्वयं तथ्य कहा है। इन्हीं तथ्यों पर ज्यामिति के प्रमेयों का प्रमाण निर्भर है। वे तथ्य निम्नलिखित हैं :

१. वे वस्तुएँ, जो एक ही वस्तु के बराबर हों, आपस में भी बराबर होती हैं।

२. यदि बराबर वस्तुओं में बराबर वस्तुएँ जोड़ दी जायँ तो योगफल बराबर होते हैं।

३. यदि बराबर वस्तुओं में से बराबर वस्तुएँ घटा दी जायँ तो शेषफल बराबर होते हैं।

४. बराबर वस्तुओं के समान गुने बराबर होते हैं।

५. यदि दो रेखाओं को तीसरी रेखा काटे और एक ओर के अंत:कोणों का योग दो समकोण से कम हो तो जिधर जोड़ कम है उधर ही दोनों रेखाएँ बढ़ाई जाने पर एक बिंदु पर मिलेंगी।

६. इसी प्रकार रचनाकार्य में भी एक रचना से दूसरी रचना कर सकते हैं, परंतु अंत में कुछ ऐसी रचनाओं पर पहुँचते हैं जिनका प्रयोग दूसरे प्रयोगों पर निर्भर नहीं करता। इन रचनाओं को भी स्वयं प्रयोग मानकर ही आगे बढ़ सकते हैं। वे

(१) किसी भी बिन्दु से एक रेखा खींची जा सकती है।(२) सीमित रेखाएँ दोनों ओर बढ़ाई जा सकती है।(३) एक बिन्दु को केंद्र मानकर किसी त्रिज्या का एक वृत्त खींच सकते हैं।

इनके अतिरिक्त वे कोई और तथ्‌य बिना सिद्ध किए हुए स्वीकार नहीं करते। उपर्युक्त पाँच स्वयं तथ्यों में से चार तो इतने सरल तथा सप्ष्ट हैं कि इन्हें सिद्ध करना अपने हाथ को अपना सिद्ध करने के बराबर है, परन्तु पाँचवाँ स्वयंतथ्‌य स्वयंसिद्ध सा प्रतीत नहीं होता। गणितज्ञों ने इस तथ्य को स्वयंसिद्ध मानने में आपत्ति की और इसे सिद्ध करने के बहुत यत्न किए। इन्हीं यत्नों के फलस्वरूप बड़े बड़े आविष्कार हुए। इसी प्रकार ज्यामिति में नए नए पारिभाषिक शब्दों का उल्लेख होता है। एक शब्द की परिभाषा दूसरे शब्दों की परिभाषा पर निर्भर करती है। अंत में देखते हैं कि ये परिभाषाएँ बिंदु, रेखा और तल की परिभाषाओं पर आधारित हैं। यूक्लिड के अनुसार समतल वह है जिसमें लंबाई चौड़ाई हो, परंतु मोटाई न हो। बहुत से लोग इस परिभाषा पर भी संदेह करने लगे हैं, परंतु थोड़ा मनन करने से यह स्पष्ट हो जाएगा कि परिभाषा ठीक है। उदाहरणार्थ, यदि काँच के एक बरतन में दो ऐसे तरल पदार्थ भर दिए जायँ जो आपस में न मिलते हो तो जब वे स्थिर हो जायँ तब हम देखगें कि एक तल दोनों पदार्थों को अलग करता है। उसमें मोटाई नहीं है। यदि होती तो दोनों तरलों के बीच ऐसा स्थान होता जिसमें न नीचे का पदार्थ होता न ऊपर का, परंतु ऐसा असंभव है। इस उदाहरण से स्पष्ट हो गया होगा कि तल में मोटाई नहीं होती। इसमें केवल लंबाई और चौड़ाई ही होती है। इसी प्रकार धूप में किसी समतल दीवार की छाया देखकर हम कह सकते हैं कि रेखा में चौड़ाई नहीं होती। रेखा तल में स्थित है, अत: तल की मोटाई रेखा की मोटाई हुई। इसलिये रेखा में न मोटाई होती है न चौड़ाई, केवल लंबाई ही होती है। रेखाएँ एक बिंदु पर मिलती हैं तो रेखा की चौड़ाई बिंदु की लंबाई हुई, अर्थात्‌ बिंदु में न लम्बाई होती है, न चौड़ाई, मोटाई। केवल स्थान ही होता है।

सभी इस बात से परिचित होंगे कि ज्यामिति में त्रिभुज, वर्ग, वृत्त, शंकु, बेलन इत्यादि के गुणों का अध्ययन होता है1 पुराने समय में कुछ प्रश्नों ने गणितज्ञों को काफी उलझाए रखा। उन प्रश्नों के हलों ने बहुत विचारवर्धन किया, इसमें कोई शंका नहीं, जैसे ऐसा घन बनाना जिसका घनफल दिए घन का दुगुना हो। उस समय रचना का अर्थ पटरी और परकार की सहायता से ही रचना करना समझा जाता था। दूसरा प्रश्न था ऐसा वर्ग बनाना जिसका क्षेत्रफल दिए हुए वृत्त के क्षेत्रफल के बराबर हो। तीसरा प्रश्न था कि एक दिए हुए कोण को तीन बराबर भागों में बाँटना। यह काम पटरी और परकार से असंभव है, परन्तु अन्य उपायों से हो सकता है। इन प्रश्नों ने शताब्दियों तक गणितज्ञों को व्यस्त रखा। इनके विवेचन से गणितजगत्‌ का बहुत लाभ पहुँचा, इसमें कोई संदेह नहीं।

एक शंकु को किसी समतल से काटने से जो दीर्घवृत्त, परवलय, तथा अतिपरवलय वक्र बनते हैं उनके गुणों का भी यूनानियों ने अध्ययन किया। इन अध्ययनों ने केपलन को अपने नियम ज्ञात करने में बड़ी सहायता दी होगी।

प्रक्षेपीय ज्यामिति (Projective Geometry)[संपादित करें]

15वीं शताब्दी तक ज्यामिति में प्राय: नाप संबंधी गुणों का ही अध्ययन होता था, परंतु उसके बाद ऐसे गुणों का भी अध्ययन हुआ जो नाप पर निर्भर नहीं करते; जैसे यदि दो त्रिभुजों के शीर्षबिंदु एक तीन बिंदुगामी रेखा पर हों तो संगत भुजाएँ एक रेखा पर मिलेंगी। इस साध्य ने गणितज्ञों का ध्यान एक अन्य प्रकार की ज्यामिति की ओर आकृष्ट किया जिसे प्रक्षेपीय ज्यामिति कहते हैं। यदि हम किसी दृश्य के चित्र पर ध्यान दें तो अनुभव करते हैं कि उसे देखकर दृश्य का पूरा ज्ञान हो जाता है। परंतु चित्र में वृत्त वृत्त नहीं रहता, न सभी समांतर रेखाएँ समांतर रहती है, न समकोण समकोण ही, बल्कि कभी समकोण न्यून कोण दिखाई देता है, कभी अधिक कोण; फिर भी दृश्य में कुछ ऐसे गुण है कि आकृतियों के बदलने पर भी चित्र से उनका पूरा ज्ञान होता है। ये गुण निश्चर कहलाते हैं। ऐसे ही गुणों का प्रक्षेपीय ज्यामिति में अध्ययन होता है।

मान लें, एक बिंदु ब और एक चतुर्भुज क ख ग घ दिया हुआ है। यदि बिंदु ब से चतुर्भुज के प्रत्येक बिंदु को मिलानेवाली रेखाएँ खींची जायँ और उन्हें बढ़ा दें और फिर एक समतल से इन रेखाओं को काटें तो इस तल पर एक चित्र बनेगा। वह इस चतुर्भुज का प्रक्षेप तथा यह प्रयोग बिंदु ब के सापेक्ष रूपांतरण कहलाएगा। इसी प्रकार दूसरा बिंदु लेकर उसके सापेक्ष इस प्रक्षेप का भी प्रक्षेप निकाल सकते हैं। जो गुण नहीं बदलते उन्हें प्रक्षेप द्वारा किसी सरल बहुभुज में बदलकर अध्ययन करते हैं। ये गुण मूल बहुभुज के लिये भी ठीक होंगे। साथ ही कई रूपांतरण मिलकर एक रूपांतरण प्रयोग के समान होते हैं। इन प्रयोगों का भी अध्ययन इस ज्यामिति का अंग है।

प्रतिलोमीय ज्यामिति (Inversive Gemoetry)[संपादित करें]

यदि किसी गोले या वृत्त का केंद्र क हो तथा त्रिज्या त्र हो और यदि किसी बिंदु ब की केंद्र क से दूरी र हो और यदि र' दूरी पर रेखा क ब में ब' दूसरा बिंदु हो, जहाँ र1 त्र2 तो ब के किसी बिंदुपथ के संगत ब' का भी पथ होगा। ब' का पथ ब के पथ का प्रतिलोमन (inversion) कहलाता है। प्रत्येक क्षेत्र प्रतिलोमन का अध्ययन ही इस शाखा का ध्येय है।

अ-यूक्लिडीय ज्यामिति (Non-Euclidean Geometry)[संपादित करें]

आलेखन में ज्यामिति कला का उपयोग क्यों करते हैं? - aalekhan mein jyaamiti kala ka upayog kyon karate hain?

गोलीय ज्यामिति, अ-युक्लिडीय ज्यामिति का एक उदाहरण है। इसका उपयोग नौवहन तथा खगोलिकी में होता है। गोलीय त्रिभुज

यूक्लिड का 5वाँ स्वयंसिद्ध तथ्य ऊपर दिया जा चुका है। इसे स्वयंसिद्ध मानने के लिये गणितज्ञ कभी तैयार नहीं हुए, बल्कि उन्होंने इसे सिद्ध करने के बड़े बड़े यत्न किए; परंतु काई संतोषजनक उत्तर नहीं मिला। अनुसंधान के फलस्वरूप गणित का बहुत विकास हुआ और एक ऐसी ज्यामिति का आविष्कार हुआ जिसने ज्यामिति में पूर्ण क्रांति उत्पन्न कर दी। यूक्लिड ने समतल पर ही सब विवेचन किए, परंतु अब हर प्रकार के तलों पर अलग अलग विवेचनाएँ होती हैं। इसका विवेचन कठिन है, अत: इसके लिये पाठक इस विषय की विशेष पुस्तकों का अवलोकन करें।

निर्देशांक ज्यामिति (Coordinate Geometry)[संपादित करें]

17वीं शताब्दी के मध्य में फ्रांसीसी गणितज्ञ डेकार्ट (Descartes) ने ज्यामिति में बीजगणित का प्रयोग कर इसे बहुत शक्तिशाली बना दिया। उसने पहले दो काटती हुई रेखाएँ लीं, जिन्हें अक्ष कहते हैं। किसी बिंदु की इन रेखाओं के समांतर नापी हुई दूरी दो संख्याओं से उसका स्थान निश्चय किया। ये रेखाएँ बिंदु के निर्देशांक कहलाती हैं। इन निर्देशांकों की सहायता से प्रत्येक ज्यामितिय तथ्य को बीजगणितीय समीकरण द्वारा प्रदर्शित किया जा सकता है। इस ज्यामिति का कई दिशाओं में विकास हुआ।

पहली दशा में तो ज्यामिति का व्यापक रूप सामने आया, जैसे एक घात का समीकरण एक सरल रेखा प्रदर्शित करता है। इसी प्रकार दो घात का समीकरण एक शांकव (conic) प्रदर्शित करता है। इसी प्रकार तीन, चार और उच्चतर घातों के समीकरणों का अध्ययन होने लगा और उनके संगत वक्रों के गुणों का विवेचन पहले से बहुत सरल हो गया। तल के वक्रों तक ही नहीं, अवकाश (space) के वक्रों का भी अध्ययन संभव हो गया। इसके लिये एक बिंदुगामी तीन समतलों से किसी बिंदु की दूरियों (x, y, z) न उसका स्थान निश्चित करते हैं और प्रत्येक बिंदुपथ को य, र, ल (x, y, z) में एक समीकरण द्वारा प्रदर्शित करते हैं। इन समीकरणों के विवेचन से तलों ओर वक्रों के गुणों का अध्ययन सरलता से होता है।

दूसरी दिशा में रचना संबंधी प्रश्नों का हल तथा क्रियाएँ बहुत सरल हो गईं। ये क्रियाएँ केवल कुछ समीकरणों के हल पर ही निर्भर हैं, जिसमें बहुत व्यापक प्रश्न सरलता से हल हो जाते हैं; जैसे यदि रेखा (ax + by + c = o) किसी वक्र (Ax2 + By2 + 2Hxy + 2Gx + 2F y + c = o) को काटती है, तो इन दोनों समीकरणों के हल उनके कटान बिंदुओं का स्थान निश्चित करेंगे। यदि इन समीकरणों के मूल वास्तविक हैं, तो रेखा वक्र को काटती है। यदि बराबर हैं तो रेखा वक्र को स्पर्श करती है। यदि काल्पनिक हैं तो रेखा वक्र को नहीं काटती, परंतु हम यह कह सकते हैं कि रेखा वक्र को सदैव दो बिंदुओं पर काटेगी, चाहे बिंदु वास्तविक या संपाती हों, अथवा काल्पनिक हों। इसी प्रकार से तथ्य बड़े व्यापक रूप में दिए जा सकते हैं, जो साधारण ज्यामिति में संभव नहीं था।

तीसरी दिशा में निर्देशांक ज्यामिति ने विमिति (dimension) को व्यापक किया। दो संख्याएँ य, र (x, y) दो विमितियों (dimensions) में तथा तीन संख्याएँ (य, र, ल) (x, y, z) तीन विमितियों में किसी बिंदु का स्थान निश्चित करती हैं। अब गणितज्ञों के सामने यह प्रश्न उठा कि चार संख्याएँ (x, y, z, t) या पाँच संख्याएँ (x, y, z, t, w) क्या प्रदर्शित करेंगी। गणितज्ञों ने तो अमूर्त रूप से अपने मस्तिष्क में बड़ी आसानी से सोच लिया कि चार संख्याएँ चार विमितियों में और पाँच संख्याएँ पाँच विमितियों में किसी बिंदु का स्थान निश्चित करेंगी।

इस प्रकार उन्होंने स विमितियों का विचार भी अच्छी तरह सोच लिया। उन्हें इससे कोई मतलब नहीं कि पार्थिव जगत्‌ में उसका कोई उदाहरण है या नहीं। आइंसटाइन ने अवश्य इस विचार का अपने सापेक्ष सिद्धांत में उपयोग किया और विमिति के विचार का स्पष्टीकरण किया। अब इस उच्च विमिति के विचार का अप्रयुक्त गणित में कुछ कठिन समस्याओं को हल करने में उपयोग करते हैं। जैसे किसी चल तरल पदार्थ के भिन्न भिन्न कणों का स्थान, सात संख्याओं से प्रदर्शित करते हैं। वे हैं (a, b, c), उसका प्रारंभिक स्थान, तथा तीन वेग, जो ( x, y, z) अक्ष के समांतर हों, तथा समय, यह सात विमिति का प्रश्न समझकर हल हो सकता है।

चौथी दिशा में निर्देशांक ज्यामिति ने संख्याओं का व्यापकीकरण किया और काल्पनिक संख्याओं का आविर्भाव हुआ। कल्पनिक बिंदु तथा काल्पनिक वक्र इत्यादि विचारों ने ज्यामिति को बहुत महत्वशाली बना दिया, जिससे व्यापकीकरण में और अधिक सहायता मिली, जैसे अनंत पर दो काल्पनिक बिंदुओं से जानेवाला शांकब वृत्त होता है, इत्यादि।

इसके अतिरिक्त ज्यामिति का विवेचन भिन्न भिन्न प्रकार के निर्देशांकों की सहायता से होने लगा, जैसे समघातीय निर्देशांक, त्रिकोणीय निर्देशांक, स्पर्शीय निर्देशांक इत्यादि।

अवकल ज्यामिति (Differential Geometry)[संपादित करें]

निर्देशांकों के प्रयोग के लगभग 50 वर्ष बाद ही कलन (calculus) का प्रयोग भी ज्यामिति में होने लगा। इस प्रयोग ने ज्यामिति में नई नई विचारधाराएँ उत्पन्न कीं। इन्हें ही अवकल ज्यामिति कहते हैं।

इन्हें भी देखें[संपादित करें]

  • प्रमेय
  • निर्मेय
  • बिंदु
  • सरल रेखा
  • त्रिभुज
  • चतुर्भुज
  • वृत्त

बाहरी कड़ियाँ[संपादित करें]

  • यूक्लिडीय ज्यामिति के बाद अन्य ज्यामितियाँ आइज़ेक एसीमोव, अनुवाद: रमा चारी
    • The Math Forum — K–12 Geometry
    • The Math Forum — College Geometry
    • The Math Forum — Advanced Geometry
  • The Mathematical Atlas — Geometric Areas of Mathematics
  • "4000 Years of Geometry", lecture by Robin Wilson given at Gresham College, 3rd October 2007 (available for MP3 and MP4 download as well as a text file)
  • What Is Geometry? at cut-the-knot
  • Geometry at cut-the-knot
  • Geometry Step by Step from the Land of the Incas by Antonio Gutierrez.
  • Islamic Geometry[मृत कड़ियाँ]
  • Stanford Encyclopedia of Philosophy:
    • Finitism in Geometry
    • Geometry in the 19th Century
  • Online Interactive Geometric Objects by Elmer G. Wiens
  • Arabic mathematics : forgotten brilliance?
  • The Geometry Junkyard
  • Geometry lessons in PowerPoint All lessons introduce mathematical concepts, step by step, with animations of text, points, lines and figures in general. Solution of problems is also given step by step. Colors are used to give hints and clues to follow the concept or the solution of the problems.