भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie

भारत मे जल का विशाल भण्डार है। इस दृष्टि से भारत का विश्व मे पांचवा स्थान है। भारत मे पहला जल विद्युत शक्ति गृह 1897 में दार्जिलिंग,पश्चिम बंगाल के सिद्रापोग मे स्थापित किया गया था। इसकी क्षमता 130 मेगावाट थी। 1902 में कर्नाटक के शिवसमुद्रम मे कावेरी नदी के तट पर 130 किलोवाट क्षमता का दूसरा जल विद्युत गृह बनाया गया। स्वतंत्रता के बाद इस क्षेत्र में भारी वृध्दि हुआ। 1950-51 में विद्युत का उत्पादन 2.5 अरब किलोवाट था जो 1970-71 में बढकर 25.2 अरब किलोवाट, 1980-81 में 46.5 अरब किलोवाट और 1990-91 में 71.7 अरब किलोवाट, 1994-95 में 76.4 अरब किलोवाट हो गया परन्तु 1995-96 मे यह घटकर 73.5 अरब किलोवाट ही रह गया। लेकिन वर्ष 2000 मे यह उत्पादन बढकर 80.555 अरब किलोवाट हो गया। 2003-2004 मे 73.796 अरब यूनिट जल विद्युत क उत्पादन हुआ।

Show

भारत में जल विद्युत परियोजना[संपादित करें]

  1. पहली जल विद्युत परियोजना कर्नाटक राज्य में कावेरी नदीपर शिवासमुद्रम स्थान पर है।
  2. महाराष्ट्र के मुम्बई में पश्चिमी घाट पर टाटा जल विद्युत परियोजना है। जिसका मुख्य उद्देश्य मुंबई को बिजली उपलब्ध कराना था।

सन्दर्भ[संपादित करें]

बाहरी कड़ियाँ[संपादित करें]

भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie

थ्री जार्ज बांध - विश्व का सबसे बड़ा जलविद्युत स्टेशन

गिरते हुए या बहते हुए जल की गतिज उर्जा से जो विद्युत उत्पन्न की जाती है उसे जलविद्युत (Hydroelectricity) कहते हैं। सन् २०२० में विश्व भर में लगभग ४५०० टेरावाट-घण्टे (TWh) जलविद्युत उत्पन्न की गयी जो कि विश्व की सम्पूर्ण विद्युत उर्जा का लगभग छठवाँ भाग है। अन्य सभी नवीकरणीय उर्जाओं को मिलाकर भी जलविद्युत ऊर्जा से कम पैदा हुआ।

जल विद्युत के लाभ[संपादित करें]

  • ऊर्जा का एक नवीकरण योग्य स्रोत – दुर्लभ ईंधन संसाधनों की रक्षा करता है।
  • प्रदूषण रहित और इसलिए पर्यावरण के अनुकूल।
  • दीर्घकालिक – वर्ष 1897 में दार्जिलिंग में पूर्ण की गई पहली जल विद्युत परियोजना अभी तक प्रचालनरत है।
  • ऊर्जा के अन्य स्रोतों की तुलना में उत्पादन, प्रचालन तथा अनुरक्षण की लागत कम है।
  • शीघ्र प्रारंभ तथा रूकने की क्षमता और भार को त्वरित स्वीकार/अस्वीकार करना इसे अधिकतम मांग को पूरा करने और प्रणाली की विश्‍वसनीयता तथा स्थिरता में वृद्धि करने के लिए उपयुक्त बनाता है।
  • तापीय (35 प्रतिशत) और गैस (लगभग 50 प्रतिशत) की तुलना में उच्चतर दक्षता (90 प्रतिशत से अधिक)।
  • उत्पादन की लागत प्रारंभिक स्थापन के पश्‍चात मुद्रास्फीति के प्रभावों से मुक्त होती है।
  • भण्डारण आधारित जल विद्युत योजनाएं अक्सर सिंचाई, बाढ़ नियंत्रण, पेयजल आपूर्ति, नौवहन, मनोरंजन, पर्यटन, मत्स्य पालन आदि हेतु सहायक लाभ मुहैया करवाती है।
  • सुदूर क्षेत्रों में अवस्थित होने के कारण यह भीतर के पिछड़े क्षेत्रों के विकास में परिणत होती हैं (शिक्षा, चिकित्सा, सड़के, संचार, दूर संचार आदि)।

भारत में जलविद्युत की अनुमानित क्षमता[संपादित करें]

भारत में विद्यमान आर्थिक रूप से दोहन योग्य तथा अर्थक्षम जल संभाव्यता 66 प्रतिशत भार कारक पर 84,000 मेगावाट आंकलित की गई है (1,48,701 मेगावाट स्थापित क्षमता)। इसके अतिरिक्त, छोटे, लघु तथा सूक्ष्म जल विद्युत योजनाओं से स्थापित क्षमता के 6780 मेगावाट का आंकलन किया गया है। 94,000 मेगावाट की संचित स्थापित क्षमता के साथ पम्प की गई भण्डारण योजनाओं हेतु 56 स्थलों की भी पहचान की गई है। तथापि, अभी तक इस संभाव्यता के केवल 19.9 प्रतशित का ही दोहन किया जा सका है।

परिचय[संपादित करें]

भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie

बांध के माध्यम से जल को ऊँचाई पर भण्डारित करके तथा उसे नियन्त्रित रूप से टर्बाईन से गुजारकर जलविद्युत पैदा की जाती है।
(A) : जलाशय,
(B) : विद्युतगृह,
(C) : टर्बाइन,
(D) : विद्युतजनित्र,
(E) : जलकपाट (वाल्व),
(F) : पाइप,
(G) : उच्च वोल्टता की लाइने,
(H) : नदी

भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie

जल टरबाइन और विद्युतजनित्र प्रायः उर्ध्वाधर दिशा में परस्पर इस प्रकार जुडे होते हैं।

विद्युत्, जल से उत्पन्न (Hydroelectric) जल से प्राप्त की गई विद्युतशक्ति को जलविद्युत् कहते हैं। विद्युत् शक्ति के जनन की विधियों में जलविद्युत् बहुत महत्वपूर्ण हैं। विश्व की संपूर्ण विद्युत् शक्ति का एक तिहाई भाग जलविद्युत् के रूप में प्राप्त होता है।

यों तो किसी भी रूप में उपलब्ध ऊर्जा को विद्युतशक्ति के जनन के लिए प्रयुक्त किया जा सकता है। जलप्रपात में गिरते हुए पानी में निहित ऊर्जा का उपयोग प्राचीन काल से ही पनचक्की को चलाने में किया जाता रहा है, परन्तु इस ऊर्जा का विद्युतशक्ति के लिए उपयोग बीसवीं शताब्दी की ही देन है।

न केवल गिरते हुए जल में निहित ऊर्जा का उपयोग शक्ति जनन के लिए किया जा सकता है, वरन् बहते हुए पानी में निहित गतिज ऊर्जा (kinetic energy) का उपयोग भी शक्ति जनन के लिए किया जा सकता है। इसके लिए सबसे पहले ऐसे स्थान का चुनाव करना होता है, जहाँ बाँध बाँधकर प्रचुर मात्रा में पानी जमा किया जा सके और उसमें निहित शक्ति को विद्युत् शक्ति के जनन के लिए जल को आवश्यकतानुसार नलों अथवा खुली नहर के द्वारा बिजलीघरों में प्रयुक्त किया जा सके। उपयुक्त स्थान की तलाश के लिए वर्षा तथा जमीन दोनों का अध्ययन करना होता है। बाँध ऐसी जगह बनाया जाता है जहाँ न्यूनतम मूल्य में बना बाँध अधिकतम पानी जमा कर सके। इसके लिए स्थान की प्राकृतिक दशा ऐसी होनी चाहिए कि कोई नदी घाटी में होती हुई पहाड़ों के बीच सँकरे मार्ग से गुजरती हो, जिससे सकरे स्थान पर बाँध बनाकर नदी के ऊपरी भाग को एक बड़े जलाशय में परिवर्तित किया जा सके। बाँध के ऊपर एक और अग्रताल (forebay) बनाया जाता है, जहाँ से पानी खुली नहर अथवा नलों द्वारा बिजलीघर तक ले जाया जाता है। यह पानी बिजलीघर में स्थित बड़े बड़े टरबाइनों को चलाता है, जिनसे योजित जनित्रों में विद्युत् शक्ति का जनन होता है। टरबाइन, सीमेंट कंक्रीट के बने ड्राफ़्टट्यूब (draft tube) के मुख पर अवस्थित होता है। पानी गाइड वेन (guide vanes) में होता हुआ टरबाइन के ब्लेडों (blades) को घुमाता है और इस प्रकार अपने निहित ऊर्जा का टरबाइन के चलाने में उपयोग करता है। चलते हुए टरबाइन की यांत्रिक ऊर्जा विद्युत् ऊर्जा में रूपांतरित कर दी जाती है और इस प्रकार जल में निहित ऊर्जा जलविद्युत् का रूप ले लेती है। टरबाइन में इस प्रकार पानी में निहित शक्ति का उपयोग हो जाने के पश्चात्, पानी ड्राफ़्ट-ट्यूब में से होता हुआ विसर्जनी कुल्या (tail race) में जाता है, जहाँ से वह फिर नदी में जा मिलता है। ड्राफ़्ट-ट्यूब की बनावट ऐसी होती है कि पानी की शेष ऊर्जा धीरे धीरे समाप्त हो जाए, जिससे बाहर आने पर नदी के किनारों को क्षतिग्रस्त न करे। पानी में निहित ऊर्जा, उसके आयतन तथा शीर्ष (head) पर निर्भर करती है। शीर्ष के अनुरूप जलविद्युत् योजनाओं को तीन भागों में बाँटा जा सकता है :

1. उच्च शीर्ष योजना (High Head Scheme) - लगभग 200 मीटर से अधिक।2. मध्यम शीर्ष योजना (Medium Head Scheme) - 50 मीटर से 200 मीटर तक।3. निम्न शीर्ष योजना (Low Head Scheme) - 50 मीटर से कम।

योजना का आकार एवं प्ररूप दोनों ही शीर्ष के ऊपर निर्भर करता है और उसी के अनुसार उसके टरबाइनों का प्ररूप भी। इस प्रकार उच्च शीर्ष के लिए फ्रांसिस (Francis) टरबाइन एवं पेस्टन चक्र (Pelton wheel) उपयुक्त होते हैं। मध्यम शीर्ष के लिए श्रावक प्रवाहवाले (inward flow) दाब टरबाइन प्रयुक्त किए जाते हैं। निम्न शीर्ष के लिए नोदक (Propellor) प्ररूप का टरबाइन अधिक उपयुक्त होता है।

उच्च शीर्षवाली योजनाओं में, साधारणतया, पानी का आयतन अधिक नहीं होता। इसलिए पानी को नलों द्वारा ले जाकर टरबाइन के तुंड (nozzle) से रनर (runner) की वाल्टियों पर छोड़ा जाता है, जिससे पानी में निहित ऊर्जा रनर को चलाने में समर्थ होती है। तुंड द्वारा पानी के पवाह और गति का नियंत्रण करने से तथा बाल्टियों पर छोड़े जानेवाले पानी के कोण का विचरण करने से टरबाइन के निर्गत (output) का नियंत्रण किया जा सकता है और इस तरह जनित होनेवाली विद्युतशक्ति का भी नियंत्रण हो सकता है। बाल्टियों के कोण का विचरण करना भी संभव है और दोनों नियंत्रणों को स्वत: चालित (automatic) रूप से भी किया जा सकता है।

नोदक प्ररूप के टरबाइन के रनर में केवल तीन या चार पंख ही होते हैं। ये भारी इस्पात के बने होते हैं। कम शीर्षवाली योजनाओं में बहुधा पानी का आयतन बहुत अधिक होता है (जिससे विद्युत्शक्ति की जनन व्यावहारिक हो सके)। अत: इनमें पानी को नलों में ले जाना संभव नहीं होता और खुली नाली का उपयोग करना होता है। भार के अनुरूप निर्गत प्राप्त करने के लिए टरबाइन में जानेवाले पानी की मात्रा का विचरण करना आवश्यक होता है, जो द्वार खुलाई (gate opening) द्वारा संपादित किया जाता है। ये द्वार गाइड पिच्छफलक की भाँति होते हैं और इनकी स्थिति पानी का नियंत्रण करती है। भारी होने के कारण ये द्वार द्रवचालित दाब (hydraulic pressure) द्वारा प्रवर्तित किए जाते हैं। जिस प्रकार पेल्टन चक्र के गाइड पिच्छफलक, अथवा बाल्टियों, के कोण का विचरण किया जाता है, उसी प्रकार इन्हें भी स्वत: चालित रूप से प्रवर्तित किया जा सकता है। स्वत: चालित विचरण सर्वो मोटर (servo motor) द्वारा किया जाता है। यह छोटा सा मोटर होता है, जो द्रवचालित दाबक का विचरण करता है। इसका निवेश (input) टरबाइन के निर्गत का ही एक अंश होता है, अत: उसके अनुसार विचरण करता है। इस प्रकार इस मोटर द्वारा किया गया कार्य टरबाइन के निर्गत पर, जो उसके ऊपर भार के अनुरूप होता है, निर्भर करता है और स्वत: चालित रूप से द्रवचालित दाबक को घटा बढ़ाकर उसी के अनुसार गाइड पिच्छफलक (vane), अथवा द्वारा खुलाई, का नियंत्रण कर देता है, अथवा बाल्टियों के कोण का व्यवस्थापन कर देता है।

नोदक प्ररूप की टरबाइन में कैप्लेन (Kaplan) प्ररूप का टरबाइन मुख्य है। इसकी विशेषता इसकी मजबूत और उच्च दक्षता है। इसकी दूसरी विशेषता यह है कि भार विचरण से दक्षता पर बहुत कम प्रभाव होता है, जिसके कारण विचरणशील भार के लिए यह टरबाइन बहुत ही उपयुक्त होता है।

मध्यम शीर्ष योजनाओं में, सामान्यत:, मिश्रित प्रवाहवाला (mixed flow) टरबाइन अधिक प्रयुक्त होता है, परंतु शीर्ष के अनुरूप ही उसका चयन अधिक निर्भर करता है। पानी को टरबाइन में ले जाने के लिए स्थिर गाइड लेन (pivoted guide vanes) का प्रयोग किया जाता है। इसके निर्गत का विचरण उनके कोण के विचरण से किया जाता है।

कम शीर्षवाला टरबाइन, साधारणतया, खुले शशैफ्ट के ऊपर स्थित होता है। ये सर्पिल (spiral) प्ररूप के आवरण (casing) से घिरे होते हैं, जिससे पानी को एक समान रूप से गाइड पिच्छफलक द्वारा ले जाया जा सके। उच्च शीर्षवाले टरबाइन में यह आवरण धातु (सामान्यत: लोहे) का बना होता है। टरबाइन क्षैतिज एवं ऊर्ध्वाधर दोनों प्रकार के हो सकते हैं। परंतु सामान्यत:, ऊर्ध्वाधर ही अधिक प्रयोग में आता है। इनमें बेयरिंग (bearing) विशिष्ट प्रकार का होता है, जिसे मशीन पर प्रतिष्ठित पार्श्व आघात (side thrust) भी वहन करना होता है। इसलिए इन्हें आघात वेयरिंग (Thrust Bearing) कहते हैं।

वेयरिंग तथा दूसरे गतिमान् भागों का स्नेहन (lubrication) भी अपने-आप में एक कठिन समस्या होती है। इसके लिए दाब स्नेहन (Pressure Lubrication) विधि का उपयोग किया जाता है। इसमें स्नेहक तैल को दबाकर स्नेहन किए जानेवाले स्थानों में भेजा जाता है। तेल पंप (oil pump) द्वारा दाब उत्पन्न की जाती है। दाब घट जाने पर, मशीन के अपने आप बंद हो जाने की व्यवस्था भी होती है, जिससे ऐसी परिस्थिति में उसे क्षति न पहुँचे। स्नेहक तैल को साफ करने के लिए एक तेल फ़िल्टर होता है और स्नेहन के पश्चात् गरम हो जानेवाले तेल का ठंढा करने के लिए तेल शीतक की भी व्यवस्था रहती है।

शक्ति[संपादित करें]

जलविद्युत् योजनाओं में सबसे अधिक महत्व उनकी स्थिति का है। इनकी स्थिति, मुख्यत:, प्राकृतिक एवं भौतिक कारणों पर निर्भर करती है। मोटे तौर पर किसी जलविद्युत् योजना से 1,000 घन फुट प्रति सेकंड के प्रवाह से 150 फुट का शीर्ष उपलब्ध होने पर लगभग 10 मेगावाट की शक्ति उपलब्ध होगी। जलाशय का अनुमान भी इस आधार पर लगाया जा सकता है, कि 1.13 वर्ग मील के क्षेत्रफल में 1 फुट पानी केवल 1 घन फुट प्रति सेकंड का प्रवाह उत्पन्न करता है। अत: 1,000 घन फुट प्रति सेकंड का प्रवाह पाने के लिए जलाशय में 113 वर्ग मील के क्षेत्रफल में औसत से 10 फुट गहरा पानी होना चाहिए। किसी भी जलविद्युत् योजना को व्यावहारिक होने के लिए वह आवश्यक है कि अधिक से अधिक शीर्ष एवं प्रवाह हो। कम शीर्षवाली योजनाएँ तभी व्यावहारिक हो सकती हैं, जब पानी का प्रवाह पर्याप्त हो। उच्च शीर्षवाली योजनाएँ कम प्रवाह पर भी व्यावहारिक हो सकती है।

स्थिति[संपादित करें]

किसी जलविद्युत संयंत्र में लगे विद्युतजनित्र (नीले रंग में)

बिजलीघर की स्थिति बाँध के निकट होना अनिवार्य नहीं है। जलाशय पहाड़ पर हो सकता है और अधिक शीर्ष पाने के लिए बिजलीघर पहाड़ की तलहटी में बनाया जा सकता है। ऐसी दशा में पानी की बड़ी बड़ी नलिकाओं द्वारा बिजलीघर तक पहुँचाया जाता है। उच्च शीर्ष वाली योजनाएँ सामान्यत: इसी प्ररूप की होती हैं।

बहुत से स्थानों पर पहाड़ी को काटकर सुरंग के द्वारा पानी को पहाड़ी के दूसरी और बिजलीघर तक पहुँचाया जाता है। बिजलीघर का पृथ्वीतल पर होना भी अनिवार्य नहीं। बहुत से बिजलीघर पृथ्वी के अंदर भी होते हैं और उस तक लिफ़्ट (lift) द्वारा ही पहुँचा जा सकता है। मैथन में भी ऐसा ही भूमिगत बिजलीघर (underground power station) बनाया गया है। ऐसे बिजली घर स्वचालित प्ररूप के हाते हैं और दूरस्थ नियंत्रण द्वारा पृथ्वीतल से चालित होते हैं। यद्यपि ये बिजलीघर मुख्यत: प्राकृतिक कारणों से ही पृथ्वी के अंदर बनाए जाते हैं, तथापि ये सामरिक दृष्टिकोण से सुरक्षित होने के कारण बहुत महत्वपूर्ण होते हैं।

कम शीर्षवाली योजनाएँ हमारे देश में बहुत हैं। गंगा एवं शारदा नहरों के ऊपर बहुत से बिजलीघर बनाए गए हैं, जिनमें केवल 20 से 30 फुट के शीर्ष का ही उपयोग किया गया है। ये योजनाएँ पानी का प्रवाह अधिक होने के कारण (कहीं-कहीं 10,000 घन फुट प्रति सेकंड भी) व्यावहारिक हो सकी हैं।

जलविद्युत् योजनाएँ, मुख्यत:, नॉर्वे, स्वीडन, स्विट्सरलैंड, जर्मनी, फ्रांस, कैनाडा, रूस एवं अमरीका में हैं। भारत भी जलविद्युत् योजनाओं में बहुत पीछे नहीं है और यहाँ की कुछ योजनाएँ विश्व की महानतम योजनाओं में गिनी जाती हैं, जैसे, भाखरा-नंगल, दामोदर घाटी, रिहंद, हिराकुंड, नागार्जुन सागर, कोयना, शिवसमुद्रम, पेरियार आदि।

बहुत सी जलविद्युत् योजनाएँ बहूद्देशीय भी होती हैं। मुख्यत: इनके साथ सिंचाई एवं बाढ़ रोधक योजनाएँ भी शामिल रहती हैं, जिससे क्षेत्र का सर्वांगीण विकास किया जा सके। अमरीका में टेनेसी घाटी निगम के आधार पर भारत में भी दामोदर घाटी निगम की स्थापना की गई। पिछले बीस वर्षों में बहुत सी महत्वपूर्ण जलविद्युत् योजनाएँ बनी हैं और सभी जगह जलविद्युत् संभावनाओं का अध्ययन कर योजनाएँ बनाई जा रही हैं।

जलविद्युत् योजना में, यद्यपि, आरंभ में बहुत अधिक व्यय होता है, तथापि तब भी परिचालन व्यय (operating expense) कम होने के कारण अधिकांश योजनाएँ आर्थिक दृष्टिकोण से सफल होती हैं। इनके संयत्र (plant) का जीवन भी अपेक्षाकृत बहुत अधिक होता है। इनका मुख्य दोष वास्तव में इनकी उपभोक्ता स्थानों से दूरी है। ये योजनाएँ जहाँ चाहें वहाँ के लिए नहीं बनाई जा सकतीं। उदाहरणार्थ, यदि शक्ति की माँग कलकत्ते में है, तो वहाँ जलविद्युत् योजना कार्यान्वित करना संभव नहीं। हिमालय से निकलनेवाली नदियों में अपार जलशक्ति निहित है, परंतु वहाँ शक्ति की माँग नहीं है। इस प्रकार जलविद्युत् योजना द्वारा जनित विद्युत् शक्ति को बहुधा बहुत दूरी तक प्रेषित (transmit) करना होता है। अत:, जलविद्युत् योजना का सापेक्ष रूप से अध्ययन करने के लिए प्रेषणतंत्र का व्यय भी लगाना आवश्यक है। तब भी अधिकांशत: जलविद्युत् ही सस्ती पड़ती है।

विश्व के विभिन्न देशों में जलविद्युत क्षमता[संपादित करें]

भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie

विश्व की कुल ऊर्जा में नवीकरणीय ऊर्जा का अंश (2008)

भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie

विश्व के पाँच प्रमुख जलविद्युत उत्पादक देशों में जलविद्युत विकास की दशा (ट्रेंड)

सन २०१४ में विश्व के दस प्रमुख जलविद्युत उत्पादक देश[1][2][3]
देशवार्षिक जलविद्युत्
उत्पादन (TWh)
स्थापित
क्षमता (GW)
कैपेसिटी
फैक्टर
कुल उत्पादन
का पर्तिशत
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
China
1064 311 0.37 18.7%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
Canada
383 76 0.59 58.3%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
Brazil
373 89 0.56 63.2%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
United States
282 102 0.42 6.5%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
Russia
177 51 0.42 16.7%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
India
132 40 0.43 10.2%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
Norway
129 31 0.49 96.0%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
Japan
87 50 0.37 8.4%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
Venezuela
87 15 0.67 68.3%
भारत के जल विद्युत परियोजना पर संक्षिप्त टिप्पणी लिखिए - bhaarat ke jal vidyut pariyojana par sankshipt tippanee likhie
 
France
69 25 0.46 12.2%

भारत में जलविद्युत[संपादित करें]

  • भाखड़ा नांगल बांध
  • दामोदर घाटी निगम (DVC)
  • हीराकुड योजना
  • शारावती
  • नागार्जुन सागर परियोजना
  • प्रताप सागर परियोजना
  • सरदार सरोवर परियोजना
  • इन्दिरा सागर परियोजना
  • नाथपा झाकड़ी जलविद्युत परियोजना
  • सतलुज जल विद्युत निगम लिमिटेड (एसजेवीएन)

सन्दर्भ[संपादित करें]

  1. "Binge and purge". The Economist. 2009-01-22. मूल से 29 जनवरी 2009 को पुरालेखित. अभिगमन तिथि 2009-01-30. 98-99% of Norway’s electricity comes from hydroelectric plants.
  2. "2015 Key World Energy Statistics" (PDF). report. International Energy Agency (IEA). मूल से 4 मार्च 2016 को पुरालेखित (PDF). अभिगमन तिथि 1 June 2016.
  3. "Indicators 2009, National Electric Power Industry". Chinese Government. मूल से 21 अगस्त 2010 को पुरालेखित. अभिगमन तिथि 18 July 2010.

इन्हें भी देखें[संपादित करें]

  • जल टरबाइन
  • पवन उर्जा
  • नवीकरणीय उर्जा (Renewable energy)
  • परमाणु उर्जा (Nuclear power)
  • सौर उर्जा (Solar energy)
  • विशाल जलविद्युत गृहों की सूची
  • एनएचपीसी लिमिटेड

बाहरी कड़ियाँ[संपादित करें]

  • एनएचपीसी लिमिटेड का जालघर
  • राष्ट्रीय जलविद्युत ऊर्जा निगम (NHPC) की जलविद्युत परियोजनाएँ
  • भाखड़ा ब्यास प्रबन्ध बोर्ड
  • सतलुज जल विद्युत निगम लिमिटेड (एसजेवीएन)
  • International Hydropower Association
  • Interactive site that demonstrates dams' effects on rivers
  • Center of expertise on hydropower impacts on fish and fish habitat, Canada
  • CBC Digital Archives – Hydroelectricity: The Power of Water
  • International Rivers
  • European Small Hydropower Association
  • Milford Hydroelectric Station Restoration Tour[मृत कड़ियाँ] Built by Henry Ford in 1939

भारत में कुल कितने जलविद्युत परियोजनाएं हैं?

भारत में लगभग 200 जलविद्युत परियोजनाएं हैं

भारत में पहली जल विद्युत परियोजना कौन सी है?

भारत में जल विद्युत परियोजना पहली जल विद्युत परियोजना कर्नाटक राज्य में कावेरी नदीपर शिवासमुद्रम स्थान पर है। महाराष्ट्र के मुम्बई में पश्चिमी घाट पर टाटा जल विद्युत परियोजना है।

जलविद्युत से आप क्या समझते हैं?

गिरते हुए या बहते हुए जल की गतिज उर्जा से जो विद्युत उत्पन्न की जाती है उसे जलविद्युत (Hydroelectricity) कहते हैं। सन् २०२० में विश्व भर में लगभग ४५०० टेरावाट-घण्टे (TWh) जलविद्युत उत्पन्न की गयी जो कि विश्व की सम्पूर्ण विद्युत उर्जा का लगभग छठवाँ भाग है।

भारत का सबसे बड़ा जल विद्युत परियोजना कौन सी है?

1500 मेगावाट क्षमता का नाथपा झाकड़ी जलविद्युत स्टेशन देश का सबसे बड़ा जलविद्युत प्लांट है। नाथपा झाकड़ी प्लांट प्रति वर्ष 6950.88 (6612) मिलियन यूनिट बिजली का उत्पादन करने के लिए डिजाइन किया गया है। परंतु प्लांट को गुणवत्ता प्रबंधन ने वार्षिक लक्ष्यों से अधिक विद्युत उत्पादन करने में सक्षम बनाया है।