मानक इलेक्ट्रोड विभव क्या है ?

मानक इलेक्ट्रोड विभव क्या है ?

गैलवानिक सेल (डेनियल सेल)

साम्यावस्था में अर्ध सेलों (हाफ सेल) के एलेक्ट्रोड विभव को मानक इलेक्ट्रोड विभव (standard electrode potentials) कहते हैं। जब तत्वो को उनके मानक अपचयन विभव के आरोही क्रम मे व्यवस्थित करते हैं तो इस प्रकार प्राप्त हुइ श्रेणी विद्युत रासायनिक श्रेणी कहलाती है।

इनका उपयोग विद्युतरासायनिक सेल (electrochemical cell) (गैल्वानिक सेल) का विभव ज्ञात करने के लिये किया जा सकता है। इसके अलावा इनका उपयोग किसी विद्युतरासायनिक रिडॉक्स (redox) अभिक्रिया के साम्य की स्थिति का पता करने के लिये किया जा सकता है। अर्थात् इसकी सहायता से यह पता कर सकते हैं कि ऊष्मागतिकी की दृष्टि से किसी विद्युतरासायनिक अभिक्रिया की गति की दिशा क्या होगी।[1][2][3][4][5] [6][7][8]

नीचे की सूची में मानक एलेक्ट्रोड विभव वोल्ट में दिये हुए हैं। ये विभव मानक हाइड्रोजन एलेक्ट्रोड (standard hydrogen electrode) के सापेक्ष दिये हुए हैं।

सारणी में दर्शाये गये विभव के मान निम्नलिखित स्थितियों में सत्य होंगे-

  • तापमान : 298.15 K (25 °C);
  • the effective concentration of 1 mol/L for each aqueous species or a species in a mercury amalgam;
  • the partial pressure of 101.325 kPa (absolute) (1 atm, 1.01325 bar) for each gaseous reagent. This pressure is used because most literature data are still given for this value rather than for the current standard of 100 kPa.
  • the activity of unity for each pure solid, pure liquid, or for water (solvent).

प्रतीक : (s) – ठोस; (l) – द्रव; (g) – गैस; (aq) – जलीय (aqueous) (default for all charged species); (Hg) – अमलगम (amalgam)

अर्ध-अभिक्रियाE° (V) Ref.
N2(g) + H+ + e− HN3(aq)  −3.09 [5]
Li+ + e− Li(s)  −3.0401 [4]
N2(g) + 4H2O + 2e− 2NH2OH(aq) + 2OH−  −3.04 [5]
Cs+ + e− Cs(s)  −3.026 [4]
Rb+ + e− Rb(s)  −2.98 [4]
K+ + e− K(s)  −2.931 [4]
Ba2+ + 2e− Ba(s)  −2.912 [4]
La(OH)3(s) + 3e− La(s) + 3OH−  −2.90 [4]
Sr2+ + 2e− Sr(s)  −2.899 [4]
Ca2+ + 2e− Ca(s)  −2.868 [4]
Eu2+ + 2e− Eu(s)  −2.812 [4]
Ra2+ + 2e− Ra(s)  −2.8 [4]
Na+ + e− Na(s)  −2.71 [4][8]
La3+ + 3e− La(s)  −2.379 [4]
Y3+ + 3e− Y(s)  −2.372 [4]
Mg2+ + 2e− Mg(s)  −2.372 [4]
ZrO(OH)2(s) + H2O + 4e− Zr(s) + 4OH−  −2.36 [4]
Al(OH)4− + 3e− Al(s) + 4OH−  −2.33
Al(OH)3(s) + 3e− Al(s) + 3OH−  −2.31
H2(g) + 2e− 2H−  −2.25
Ac3+ + 3e− Ac(s)  −2.20
Be2+ + 2e− Be(s)  −1.85
U3+ + 3e− U(s)  −1.66 [6]
Al3+ + 3e− Al(s)  −1.66 [8]
Ti2+ + 2e− Ti(s)  −1.63 [8]
ZrO2(s) + 4H+ + 4e− Zr(s) + 2H2O  −1.553 [4]
Zr4+ + 4e− Zr(s)  −1.45 [4]
TiO(s) + 2H+ + 2e− Ti(s) + H2O  −1.31
Ti2O3(s) + 2H+ + 2e− 2TiO(s) + H2O  −1.23
Ti3+ + 3e− Ti(s)  −1.21
Mn2+ + 2e− Mn(s)  −1.185 [4]
Te(s) + 2e− Te2−  −1.143 [2]
V2+ + 2e− V(s)  −1.13 [2]
Nb3+ + 3e− Nb(s)  −1.099
Sn(s) + 4H+ + 4e− SnH4(g)  −1.07
SiO2(s) + 4H+ + 4e− Si(s) + 2H2O  −0.91
B(OH)3(aq) + 3H+ + 3e− B(s) + 3H2O  −0.89
TiO2+ + 2H+ + 4e− Ti(s) + H2O  −0.86
Bi(s) + 3H+ + 3e− BiH3  −0.8
2H2O + 2e− H2(g) + 2OH−  −0.8277 [4]
Zn2+ + 2e− Zn(Hg)  −0.7628 [4]
Zn2+ + 2e− Zn(s)  −0.7618 [4]
Ta2O5(s) + 10H+ + 10e− 2Ta(s) + 5 H2O  −0.75
Cr3+ + 3e− Cr(s)  −0.74
[Au(CN)2]− + e− Au(s) + 2CN−  −0.60
Ta3+ + 3e− Ta(s)  −0.6
PbO(s) + H2O + 2e− Pb(s) + 2OH−  −0.58
2TiO2(s) + 2H+ + 2e− Ti2O3(s) + H2O  −0.56
Ga3+ + 3e− Ga(s)  −0.53
U4+ + e− U3+  −0.52 [6]
H3PO2(aq) + H+ + e− P(white[9]) + 2H2O  −0.508 [4]
H3PO3(aq) + 2H+ + 2e− H3PO2(aq) + H2O  −0.499 [4]
H3PO3(aq) + 3H+ + 3e− P(red)[9] + 3H2O  −0.454 [4]
Fe2+ + 2e− Fe(s)  −0.44 [8]
2CO2(g) + 2H+ + 2e− HOOCCOOH(aq)  −0.43
Cr3+ + e− Cr2+  −0.42
Cd2+ + 2e− Cd(s)  −0.40 [8]
GeO2(s) + 2H+ + 2e− GeO(s) + H2O  −0.37
Cu2O(s) + H2O + 2e− 2Cu(s) + 2OH−  −0.360 [4]
PbSO4(s) + 2e− Pb(s) + SO42−  −0.3588 [4]
PbSO4(s) + 2e− Pb(Hg) + SO42−  −0.3505 [4]
Eu3+ + e− Eu2+  −0.35 [6]
In3+ + 3e− In(s)  −0.34 [2]
Tl+ + e− Tl(s)  −0.34 [2]
Ge(s) + 4H+ + 4e− GeH4(g)  −0.29
Co2+ + 2e− Co(s)  −0.28 [4]
H3PO4(aq) + 2H+ + 2e− H3PO3(aq) + H2O  −0.276 [4]
V3+ + e− V2+  −0.26 [8]
Ni2+ + 2e− Ni(s)  −0.25
As(s) + 3H+ + 3e− AsH3(g)  −0.23 [2]
MoO2(s) + 4H+ + 4e− Mo(s) + 2H2O  −0.15
Si(s) + 4H+ + 4e− SiH4(g)  −0.14
Sn2+ + 2e− Sn(s)  −0.13
O2(g) + H+ + e− HO2•(aq)  −0.13
Pb2+ + 2e− Pb(s)  −0.13 [8]
WO2(s) + 4H+ + 4e− W(s) + 2H2O  −0.12
P(red) + 3H+ + 3e− PH3(g)  −0.111 [4]
CO2(g) + 2H+ + 2e− HCOOH(aq)  −0.11
Se(s) + 2H+ + 2e− H2Se(g)  −0.11
CO2(g) + 2H+ + 2e− CO(g) + H2O  −0.11
SnO(s) + 2H+ + 2e− Sn(s) + H2O  −0.10
SnO2(s) + 2H+ + 2e− SnO(s) + H2O  −0.09
WO3(aq) + 6H+ + 6e− W(s) + 3H2O  −0.09 [2]
P(white) + 3H+ + 3e− PH3(g)  −0.063 [4]
HCOOH(aq) + 2H+ + 2e− HCHO(aq) + H2O  −0.03
2H+ + 2e− H2(g)    0.0000 ≡ 0
S4O62− + 2e− 2S2O32−  +0.08
Fe3O4(s) + 8H+ + 8e− 3Fe(s) + 4H2O  +0.085 [7]
N2(g) + 2H2O + 6H+ + 6e− 2NH4OH(aq)  +0.092
HgO(s) + H2O + 2e− Hg(l) + 2OH−  +0.0977
Cu(NH3)42+ + e− Cu(NH3)2+ + 2NH3  +0.10 [2]
Ru(NH3)63+ + e− Ru(NH3)62+  +0.10 [6]
N2H4(aq) + 4H2O + 2e− 2NH4+ + 4OH−  +0.11 [5]
H2MoO4(aq) + 6H+ + 6e− Mo(s) + 4H2O  +0.11
Ge4+ + 4e− Ge(s)  +0.12
C(s) + 4H+ + 4e− CH4(g)  +0.13 [2]
HCHO(aq) + 2H+ + 2e− CH3OH(aq)  +0.13
S(s) + 2H+ + 2e− H2S(g)  +0.14
Sn4+ + 2e− Sn2+  +0.15
Cu2+ + e− Cu+  +0.159 [2]
HSO4− + 3H+ + 2e− SO2(aq) + 2H2O  +0.16
UO22+ + e− UO2+  +0.163 [6]
SO42− + 4H+ + 2e− SO2(aq) + 2H2O  +0.17
TiO2+ + 2H+ + e− Ti3+ + H2O  +0.19
Bi3+ + 2e− Bi+  +0.2
SbO+ + 2H+ + 3e− Sb(s) + H2O  +0.20
H3AsO3(aq) + 3H+ + 3e− As(s) + 3H2O  +0.24
GeO(s) + 2H+ + 2e− Ge(s) + H2O  +0.26
UO2+ + 4H+ + e− U4+ + 2H2O  +0.273 [6]
Re3+ + 3e− Re(s)  +0.300
Bi3+ + 3e− Bi(s)  +0.32
VO2+ + 2H+ + e− V3+ + H2O  +0.34
Cu2+ + 2e− Cu(s)  +0.340 [2]
[Fe(CN)6]3− + e− [Fe(CN)6]4−  +0.36
O2(g) + 2H2O + 4e− 4OH−(aq)  +0.40 [8]
H2MoO4 + 6H+ + 3e− Mo3+ + 2H2O  +0.43
Bi+ + e− Bi(s)  +0.50
CH3OH(aq) + 2H+ + 2e− CH4(g) + H2O  +0.50
SO2(aq) + 4H+ + 4e− S(s) + 2H2O  +0.50
βNiOOH(s) + H2O + e− βNi(OH)2(s) + OH−

(Alkaline batteries: Ni-Cd, Ni-MH, Ni-Zn...)

 +0.520 [10].
Cu+ + e− Cu(s)  +0.520 [2]
CO(g) + 2H+ + 2e− C(s) + H2O  +0.52
I2(s) + 2e− 2I−  +0.54 [8]
I3− + 2e− 3I−  +0.53 [8]
[AuI4]− + 3e− Au(s) + 4I−  +0.56
H3AsO4(aq) + 2H+ + 2e− H3AsO3(aq) + H2O  +0.56
[AuI2]− + e− Au(s) + 2I−  +0.58
MnO4− + 2H2O + 3e− MnO2(s) + 4OH−  +0.59
S2O32− + 6H+ + 4e− 2S(s) + 3H2O  +0.60
H2MoO4(aq) + 2H+ + 2e− MoO2(s) + 2H2O  +0.65
O2(g) + 2H+ + 2e− H2O2(aq)  +0.70
Tl3+ + 3e− Tl(s)  +0.72
PtCl62− + 2e− PtCl42− + 2Cl−  +0.726 [6]
H2SeO3(aq) + 4H+ + 4e− Se(s) + 3H2O  +0.74
PtCl42− + 2e− Pt(s) + 4Cl−  +0.758 [6]
Fe3+ + e− Fe2+  +0.77
Ag+ + e− Ag(s)  +0.7996 [4]
Hg22+ + 2e− 2Hg(l)  +0.80
NO3−(aq) + 2H+ + e− NO2(g) + H2O  +0.80
[AuBr4]− + 3e− Au(s) + 4Br−  +0.85
Hg2+ + 2e− Hg(l)  +0.85
MnO4− + H+ + e− HMnO4−  +0.90
2Hg2+ + 2e− Hg22+  +0.91 [2]
Pd2+ + 2e− Pd(s)  +0.915 [6]
[AuCl4]− + 3e− Au(s) + 4Cl−  +0.93
MnO2(s) + 4H+ + e− Mn3+ + 2H2O  +0.95
[AuBr2]− + e− Au(s) + 2Br−  +0.96
Br2(l) + 2e− 2Br−  +1.066 [4]
Br2(aq) + 2e− 2Br−  +1.0873 [4]
IO3− + 5H+ + 4e− HIO(aq) + 2H2O  +1.13
[AuCl2]− + e− Au(s) + 2Cl−  +1.15
HSeO4− + 3H+ + 2e− H2SeO3(aq) + H2O  +1.15
Ag2O(s) + 2H+ + 2e− 2Ag(s) + H2O  +1.17
ClO3− + 2H+ + e− ClO2(g) + H2O  +1.18
Pt2+ + 2e− Pt(s)  +1.188 [6]
ClO2(g) + H+ + e− HClO2(aq)  +1.19
2IO3− + 12H+ + 10e− I2(s) + 6H2O  +1.20
ClO4− + 2H+ + 2e− ClO3− + H2O  +1.20
O2(g) + 4H+ + 4e− 2H2O  +1.23 [8]
MnO2(s) + 4H+ + 2e− Mn2+ + 2H2O  +1.23
Tl3+ + 2e− Tl+  +1.25
Cl2(g) + 2e− 2Cl−  +1.36 [8]
Cr2O7−− + 14H+ + 6e− 2Cr3+ + 7H2O  +1.33
CoO2(s) + 4H+ + e− Co3+ + 2H2O  +1.42
2NH3OH+ + H+ + 2e− N2H5+ + 2H2O  +1.42 [5]
2HIO(aq) + 2H+ + 2e− I2(s) + 2H2O  +1.44
Ce4+ + e− Ce3+  +1.44
BrO3− + 5H+ + 4e− HBrO(aq) + 2H2O  +1.45
β-PbO2(s) + 4H+ + 2e− Pb2+ + 2H2O  +1.460 [2]
α-PbO2(s) + 4H+ + 2e− Pb2+ + 2H2O  +1.468 [2]
2BrO3− + 12H+ + 10e− Br2(l) + 6H2O  +1.48
2ClO3− + 12H+ + 10e− Cl2(g) + 6H2O  +1.49
MnO4− + 8H+ + 5e− Mn2+ + 4H2O  +1.51
HO2• + H+ + e− H2O2(aq)  +1.51
Au3+ + 3e− Au(s)  +1.52
NiO2(s) + 4H+ + 2e− Ni2+ + 2OH−  +1.59
2HClO(aq) + 2H+ + 2e− Cl2(g) + 2H2O  +1.63
Ag2O3(s) + 6H+ + 4e− 2Ag+ + 3H2O  +1.67
HClO2(aq) + 2H+ + 2e− HClO(aq) + H2O  +1.67
Pb4+ + 2e− Pb2+  +1.69 [2]
MnO4− + 4H+ + 3e− MnO2(s) + 2H2O  +1.70
H2O2(aq) + 2H+ + 2e− 2H2O  +1.78
AgO(s) + 2H+ + e− Ag+ + H2O  +1.77
Co3+ + e− Co2+  +1.82
Au+ + e− Au(s)  +1.83 [2]
BrO4− + 2H+ + 2e− BrO3− + H2O  +1.85
Ag2+ + e− Ag+  +1.98 [2]
S2O82− + 2e− 2SO42−  +2.010 [4]
O3(g) + 2H+ + 2e− O2(g) + H2O  +2.075 [6]
HMnO4− + 3H+ + 2e− MnO2(s) + 2H2O  +2.09
F2(g) + 2e− 2F−  +2.87 [2][8]
F2(g) + 2H+ + 2e− 2HF(aq)  +3.05 [2]

सन्दर्भ[संपादित करें]

  • https://web.archive.org/web/20080720062116/http://www.jesuitnola.org/upload/clark/Refs/red_pot.htm
  • https://web.archive.org/web/20090305134158/http://hyperphysics.phy-astr.gsu.edu/Hbase/Tables/electpot.html#c1
  1. Milazzo, G., Caroli, S., and Sharma, V. K. (1978). Tables of Standard Electrode Potentials (Wiley, Chichester).
  2. ↑ अ आ इ ई उ ऊ ए ऐ ओ औ क ख ग घ ङ च छ ज झ ञ Bard, A. J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solutions (Marcel Dekker, New York).
  3. Bratsch, S. G. (1989). Journal of Physical Chemistry Reference Data Vol. 18, pp. 1–21.
  4. ↑ अ आ इ ई उ ऊ ए ऐ ओ औ क ख ग घ ङ च छ ज झ ञ ट ठ ड ढ ण त थ द ध न प फ ब भ म य Vanýsek, Petr (2007). “Electrochemical Series” Archived 2017-07-24 at the Wayback Machine, in Handbook of Chemistry and Physics: 88th Edition Archived 2018-04-30 at the Wayback Machine (Chemical Rubber Company).
  5. ↑ अ आ इ ई उ साँचा:Greenwood&Earnshaw
  6. ↑ अ आ इ ई उ ऊ ए ऐ ओ औ क ख Bard, A.J., Faulkner, L.R.(2001). Electrochemical Methods. Fundamentals and Applications, 2nd edition (John Wiley and Sons Inc).
  7. ↑ अ आ Marcel Pourbaix (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE International, Houston, Texas; Cebelcor, Brussels).
  8. ↑ अ आ इ ई उ ऊ ए ऐ ओ औ क ख ग घ Peter Atkins (1997). Physical Chemistry, 6th edition (W.H. Freeman and Company, New York).
  9. ↑ अ आ Not specified in the indicated reference, but assumed due to the difference between the value −0.454 and that computed by (2×−0.499 + −0.508) ÷ 3 = −0.502 exactly matching the difference between white and red phosphorus in equilibrium with phosphine.
  10. Inside the Nickel Metal Hydride Battery, John J.C. Kopera, Cobasys, 25 जून 2004 (eg)

इन्हें भी देखें[संपादित करें]

  • गैल्वानिक श्रेणी (Galvanic series)
  • विद्युतरासायनिक विभव (Electrochemical potential)

मानक इलेक्ट्रोड विभव क्या है in Hindi?

मानक इलेक्ट्रोड विभव (standard electrode potential) किसी भी अर्द्ध सेल में अर्थात एक इलेक्ट्रोड में 298 केल्विन ताप और एक मोल प्रति लीटर सांद्रता के धातु आयन विलयन में इलेक्ट्रोड के विभव का मान मानक इलेक्ट्रोड विभव कहलाता है। किसी अर्द्ध सेल के मानक इलेक्ट्रोड विभव के मान को E0 से व्यक्त किया जाता है।

इलेक्ट्रोड विभव कितने प्रकार के होते हैं?

इलेक्ट्रोड विभव निम्नलिखित तीन प्रकार के होते है, ऑक्सीकरण इलेक्ट्रोड विभव और अपचयन इलेक्ट्रोड विभव

नर्स्ट समीकरण क्या है मानक इलेक्ट्रोड विभव तथा इलेक्ट्रोड विभव में क्या सम्बन्ध है?

एक इलेक्ट्रोड पर ऑक्सीकरण तथा दूसरे इलेक्ट्रोड पर अपचयन होता है। इनके इलेक्ट्रोड विभव एवं मानक इलेक्ट्रोड विभव को क्रमशः E तथा Eo से प्रदर्शित किया जाता है। वैज्ञानिक नर्नस्ट ने किसी अर्ध सेल का इलेक्ट्रोड विभव ज्ञात करने के लिए एक समीकरण का प्रतिपादन किया जिसे नर्नस्ट समीकरण (Nernst equation in Hindi) कहते हैं।

मानक हाइड्रोजन इलेक्ट्रोड क्या है यह कैसे बनाया जाता है?

Solution : मानक हाइड्रोजन इलेक्ट्रोड - इसमें प्लैटिनम ब्लैक की परत चढ़ी हुई प्लैटिनम की एक पतली पत्ती का इलेक्ट्रोड हाइड्रोजन आयन `(H^(+))` के एक मोलर सांद्रता के विलयन में डुबाकर रखा जाता है । यह काँच की एक नली से ढँका रहता है । नली में से एक वायुमंडलीय दाब पर शुद्ध हाइड्रोजन गैस प्रवाहित की जाती है ।